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Abstract
We study the quantum propagation of particles in cosmological backgrounds,
by considering a doublet of massive scalar fields propagating in an expanding
universe, possibly filled with radiation. We focus on the dissipative effects
related to the expansion rate. At first order, we recover the expected result
that the decay rate is determined by the local temperature. Beyond linear
order, the decay rate has an additional contribution governed by the expansion
parameter. This latter contribution is present even for stable particles in the
vacuum. Finally, we analyse the long time behaviour of the propagator and
briefly discuss applications to the trans-Planckian question.

PACS numbers: 04.62.+v, 98.80.Cq

1. Introduction

In this contribution we study the quantum propagation of particles in a cosmological
background. We are particularly interested in understanding the dissipative phenomena related
to the time dependence of the metric. To this end, we analyse the propagator of a massive
particle which interacts with a massless radiation field in an expanding universe. Several
points must be considered.

First, we are dealing with an interacting field theory in a curved spacetime. In this
situation, the asymptotic in and out vacua generally do not coincide. Being interested in
expectation values, rather than in in-out matrix elements, we adopt the Keldysh–Schwinger
formalism, or closed time path (CTP) method [1–3] in curved spacetime [4–7].

Second, as it is well known, in a curved spacetime there is no single definition for the
vacuum nor for the concept of particle. We face this issue by working within the adiabatic
approximation [8]: the massive particles will have their Compton wavelengths much smaller
than the typical curvature radius of the universe (in our case, the Hubble radius).

Third, as explained in [9], in theories such as QED or perturbative quantum gravity,
dissipative effects appear only at two loops, because the one-loop diagrams which could lead
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to dissipation vanish on the mass shell. Here, in order to keep the calculations simple, we have
chosen a simple, yet physically meaningful, model which exhibits dissipation at one loop. We
expect the behaviour of QED or perturbative quantum gravity to be similar at two loops.

In this contribution we compute the retarded self-energy of the lightest field in a massive
doublet which propagates in a thermal bath of massless particles in an expanding universe,
and from it we extract the decay rate. Note that in the Minkowski vacuum the excitations
of the lighter field are stable; hence the decay rate is zero. We concentrate on the physical
insights and summarize the main results. A more detailed account will be given in separate
publications [10, 11]

The contribution is organized as follows. In section 2 we introduce the model and motivate
the use of the adiabatic approximation for the massive fields. In section 3 we present the results
for the imaginary part of the self-energy and the decay rate. In section 4 we study the time
evolution of the interacting propagator. Finally, in section 5 we summarize the main points of
the contribution and discuss its relevance to the trans-Planckian question. We use a system of
natural units with h̄ = c = 1, and the metric has the signature (−, +, +, +).

2. The model

We consider spatially isotropic and homogeneous Friedmann–Lemaı̂tre–Robertson–Walker
models with flat spatial sections:

ds2 = −dt2 + a2(t) dx2. (1)

The particle model is the following: two massive fields φm, and φM , interacting with a massless
field, χ , via a trilinear coupling. The total action is S = Sm + SM + Sχ + Sint, where each term
is given by

Sm = 1

2

∫
dt d3x a3(t)

(
(∂tφm)2 − 1

a2(t)
(∂xφm)2 − m2φ2

m

)
, (2a)

SM = 1

2

∫
dt d3x a3(t)

(
(∂tφM)2 − 1

a2(t)
(∂xφM)2 − M2φ2

M

)
, (2b)

Sχ = 1

2

∫
dt d3x a3(t)

(
(∂tχ)2 − 1

a2(t)
(∂xχ)2 − ξR(t)χ2

)
, (2c)

Sint = gM

∫
dt d3x a3(t)φmφMχ, (2d)

with R(t) being the Ricci scalar. We assume that the massless field is conformally coupled
to gravity, so that ξ = 1/6. It is useful to work with rescaled massive fields defined by
φ̄(t, x) := [−g(t, x)]1/4φ(t, x) = a3/2(t)φ(t, x).

We consider the two massive fields having large masses but with a small mass difference
�m := M − m � M . As shown in [12], the model can be interpreted as a field-theory
description of a relativistic two-level atom (of mass m and energy gap �m) interacting with a
scalar radiation field χ . The radiation field χ is assumed to be at some conformal temperature
θ (which can eventually be zero). The corresponding physical temperature, as well as the
Hubble rate H(t) := ȧ(t)/a(t), is chosen to be much smaller than the masses of the fields.
These restrictions ensure that the number of massive particles is strictly conserved. The
non-trivial dynamics concerns the transitions between the two massive fields accompanied by
emission and absorption of massless quanta.
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In a curved spacetimes it is not a trivial task to compute even the free field vacuum
propagators. For massless conformally coupled fields there is a natural vacuum state, the
conformal vacuum. Propagators in this vacuum, when expressed in conformal time, essentially
correspond to the flat spacetime propagators. For the massive fields, rather than attempting
to find the exact free propagator, we will exploit the fact that their Compton wavelengths are
much smaller than the Hubble length H−1. In this regime, the adiabatic (WKB) approximation
is valid and explicit expressions for the free propagators can be computed [8, 10]—see for
instance (19).

3. The self-energy and decay rates

In this section we consider the interacting retarded Green function

GR(t, t ′; p) := θ(t − t ′)〈[φ̂mp(t), φ̂mp(t
′)]〉 (3)

within the adiabatic approximation. It is related to the retarded self-energy �R via [12]

GR(t, t ′; p) = G
(0)
R (t, t ′; p)

− i
∫

ds ds ′√−g(s)
√

−g(s ′)G(0)
R (t, s; p)�R(s, s ′; p)GR(s ′, t ′; p) (4)

where G
(0)
R (t, t ′; p) is the free retarded propagator. In terms of the rescaled fields,

φ̄(t; p) = a3/2φ(t; p), the above relation becomes

ḠR(t, t ′; p) = Ḡ
(0)
R (t, t ′; p) − i

∫
ds ds ′Ḡ(0)

R (t, s; p)�̄R(s, s ′; p)ḠR(s ′, t ′; p). (5)

We assume that the massive fields are in the adiabatic vacuum, and that the massless field
χ is in a thermal state, characterized by a fixed conformal temperature θ . We will compute the
imaginary part of the one-loop self-energy to order g2 in the adiabatic approximation, evaluated
at the mass shell. It will be evaluated in a frequency representation around the average time
coordinate T = (t1 + t2)/2, by Fourier-transforming with respect to the difference coordinate
� = t1 − t2, which amounts to a local frequency representation (it is further analysed in the
following section). As for the spatial part, we work in the momentum representation to exploit
conservation of the conformal momentum.

3.1. Linear approximation to the scale factor

As a first step, we approximate the evolution of the scale factor by a linear expansion:

a(t) ≈ a(T )[1 + H(T )(t − T )]. (6)

This approximation for the scale factor is appropriate when considering physical temperatures
which are much larger than the expansion rate (but still much smaller than the fields masses).
On the mass shell, thermal corrections will dominate over curvature corrections, since the
thermal energy scale is much larger than the curvature energy scale. Therefore, we expect
the on-shell self-energy to be governed by the thermal bath at the instantaneous physical
temperature at each moment of the expansion, θ/a(T ).

The explicit calculation [10] confirms that the imaginary part of the on-shell self-energy
is given by that of a thermal bath in Minkowski at a physical temperature θ/a(T ). In the limit
in which the atoms are at rest this result is [10, 12]

Im �̄R(m, T ; 0) = − g2

8π
M�m nθ/a(T )(�m), (7)
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where nθ/a(T )(�m) is the Bose–Einstein function:

nθ/a(T )(�m) := 1
e�ma(T )/θ −1

. (8)

As in Minkowski spacetime, the self-energy corresponds to a decay rate,

	 = − 1

m
Im �̄R(m, T ; 0) = g2

8π
�m nθ/a(T )(�m), (9)

which amounts to the probability per unit time for the lightest state to absorb a massless
particle from the thermal bath.

3.2. Beyond linear order: vacuum effects

When the expansion rate of the universe is of the order of the temperature or larger, vacuum
effects become relevant. Energy conservation does not hold for energy scales of the order of
the expansion rate, and therefore we expect new channels for the particle decay which will
contribute to the imaginary part of the self-energy.

In order to study the vacuum effects we need to choose an explicit model for the evolution
of the scale factor. For instance, in the case of de Sitter,

a(t) = a(T ) eH(t−T ), (10)

the vacuum contribution to the imaginary part of the retarded self-energy given by [11]

Im �̄R(m, T ; 0) = − g2

8π
M�m nH/(2π)(�m), (11)

which coincides with the self-energy in a Minkowski thermal bath at a temperature H/(2π).
The result is not unexpected since the effective de Sitter temperature [13] is recovered. The
corresponding decay rate

	 = − 1

m
Im �̄R(m, T ; 0) = g2

8π
�m nH/(2π)(�m), (12)

amounts for the probability per unit time for the lightest field to emit a massless particle.
Energy conservation forbids this process in Minkowski spacetime, but this restriction does not
apply in an expanding universe.

4. Retarded propagator and self-energy in cosmology

In expanding universes the propagators are no longer time-translation invariant. We can
nevertheless always express the propagator in a frequency representation,

ḠR(ω, T ; p) :=
∫

d� eiω� ḠR(T + �/2, T − �/2; p). (13)

For short-time differences as compared to the inverse expansion rate, i.e., |t − t ′| � H−1, (5)
can be diagonalized:

ḠR(ω, T ; p) = −i

[−iḠ(0)(ω, T ; p)]−1 + �̄R(ω, T ; p)
. (14)

Fourier-transforming again we get the short-time behaviour:

ḠR(t, t ′; p) = −i

Rp(T )
sin[Rp(T )(t − t ′)] e−	p(T )(t−t ′)/2 θ(t − t ′), (15)
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with

R2
p(T ) := E2

p(T ) + Re �̄R(Ep, T ; p) := m2 +
p2

a2(T )
+ Re �̄R(Ep, T ; p) (16)

and

	p(T ) := − 1

Rp(T )
Im �̄R(Ep, T ; p). (17)

Therefore one recovers the usual interpretation, in which the real part of the self-energy
corresponds to the energy shift, and in which the imaginary part corresponds to the decay rate.
Note that both quantities depend in general on time.

One may also be interested in considering large time lapses, and in this case the frequency
representation of the propagator around the average time does not make sense. Lifting
the short-time requirement, and only imposing the adiabatic approximation, the following
expression for the evolution of the retarded propagator is found [10]:

ḠR(t1, t2; p) = −i√
Rp(t1)Rp(t2)

sin

(∫ t1

t2

dt ′Rp(t
′)
)

exp

(
−

∫ t1

t2

dt ′	p(t
′)/2

)
θ(t1 − t2).

(18)

Note that the long-time evolution of the propagator can be expressed in terms of integrals
of quantities evaluated in the local frequency representation. Two time scales are clearly
separated: the interaction time scale, in which the interaction process takes place and the
self-energy is evaluated, and the evolution time scale, which can be much longer and during
which the propagators deviate significantly from the corresponding Minkowski expression.
Equation (18) can be derived in a very similar way as the well-known adiabatic approximation
for the free retarded propagator [8]:

Ḡ
(0)
R (t1, t2; p) = −i√

Ep(t1)Ep(t2)
sin

(∫ t1

t2

dt ′Ep(t
′)
)

θ(t1 − t2). (19)

5. Summary and discussion

The goal of this contribution is to analyse the quantum effects in the propagation of interacting
fields in a cosmological background. This issue may play an important role in justifying the
non-trivial dispersion relations which have been used when addressing the trans-Planckian
question in the context of black holes [14–17] and cosmology [18–21]. Interactions could
indeed significantly modify the field propagation when approaching the event horizon of a
black hole [22–25] or at primordial stages of inflation [9].

In our model, the masses of the fields were assumed to be much larger than the expansion
rate of the universe. This was a key assumption, because it allowed us to introduce the
adiabatic (WKB) approximation, which not only makes the problem solvable, but also allows
having a well-defined particle concept even in the absence of asymptotic regimes. Within this
approximation, the time evolution of the interacting propagators can be computed from the
integral of the retarded self-energy, evaluated on-shell in a frequency representation around
the mid time.

The imaginary part of the self-energy determines the decay of the retarded propagator,
and hence it is an expression of the dissipative properties. For temperatures higher than the
expansion parameter the decay of the propagator is determined by the local temperature at
each moment of expansion. For lower temperatures, the decay of the propagator is driven
by the expansion rate of the universe. This second contribution, which is present even in the
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vacuum, can be interpreted as being a consequence of the absence of energy conservation at
those energy scales comparable to the expansion rate.

The decay rate, derived from the imaginary part of the self-energy, has a secular character.
Even small decay rates could thus give an important effect when integrated over large periods
of time. The exact significance of the generically dissipative properties of the propagator will
be further analysed elsewhere [11].
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